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Abstract: Relatively simple quantum mechanical calculations are described for atoms and ions up to boron. The 
calculations employ scaled hydrogenic orbitals and can be completed with or without the aid of a computer. 
Given the simplicity of the trial wave functions the agreement with experiment is satisfactory. 

Noting the absence of simple multielectron calculations in 
the pedagogical literature, Saleh-Jahromi and Moebs [1] 
recently described a one-parameter variational calculation on 
three-electron atomic species (Li, Be

+
, B

2+
) that gave 

reasonable agreement with experimental data. The purpose of 
the present manuscript is to demonstrate that it is easy to 
extend their calculation to four- and five-electron systems. 
Thus, without an unreasonable amount of mathematical effort 
it is possible to develop a set of one-parameter variational 
calculations on the elements from hydrogen to boron. 

In this study one-, two-, and three-electron variational 
calculations will be reviewed and then extended to four- and 
five-electron systems. The scaled hydrogenic orbitals [2] that 
will be used are given below: 
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Because the 1s, 2s, and 2pz orbitals contain the same 
variational parameter (α) they remain orthogonal under the 
variational procedure. This prevents the need for an 
antisymmetric wave function and greatly reduces the 
mathematical complexity of the calculations. As we shall see 
later, this one-parameter simplicity comes at a price and the 
comparison between model and experiment deteriorates 
rapidly by the time we reach boron; however, there is still a lot 
of pedagogical merit in this set of calculations. Given the set 
of Mathcad-generated integrals in Appendix B ((42fr1897.zip 
Adobe Acrobat PDF or 42fr2897.zip Mathcad files), they 
require only the most rudimentary operations of differential 
calculus. Without the interference of complicated mathematics 
the students can see the basic quantum mechanical procedures 
more clearly. 

The following is an outline of how the exercises might be 
carried out. 

a) Identify the contributions to the total electronic energy, E, 
of the species under study. 

b) Go to Appendix B (42fr1897.zip Adobe Acrobat PDF or 
42fr2897.zip Mathcad files) to get the values of those 
contributions in terms of α. 

c) Minimize E with respect to α, and compare E with the 
negative of the sum of ionization energies. See Table 1. 

d) Repeat steps 1 to 3 for the +1 ion and calculate the first 
ionization energy. Compare the calculated results with the 
experimental first ionization energies. See Table 1. 

e) Calculate the orbital energies for all neutral species and 
compare the theoretical calculations with the orbital 
ionization energies. See Table 2. 

How this set of tasks can be accomplished is outlined 
below. 

One Electron 

Two terms contribute to the total energy of a one-electron 
atom or ion: electron kinetic energy and electron-nucleus 
potential energy. Obviously Schrödinger=s equation for the 
one-electron case can be solved exactly. However, for the sake 
of continuity with the multi-electron examples we note that if 
Ψ1s is used as the trial function in a variational calculation the 
following expression for the energy is obtained. 
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Appendix A outlines the methods used to evaluate the 
electron-electron repulsion integrals required for multielectron 
atoms and ions. The evaluation of the 1sT  and N1s V  

integrals, as well all other integrals used subsequently, using 
Mathcad=s symbolic processor is shown in Appendix B 
(42fr1897.zip Adobe Acrobat PDF or 42fr2897.zip Mathcad 
files). Minimization of E with respect to α yields, 
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For one-electron atoms and ions the total energy and the 
orbital energy of the electron are obviously the same. All 
calculations are in atomic units: h = 2π; m = e = 4πε = 1. 
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Table 1. Comparison of Atomic and Ionic Ground States with 
Experiment (3) 

 H He Li Be B 

Eatom -0.500 -2.848 -7.235 -14.062 -23.317 

Exp. -0.500 -2.903 -7.478 -14.668 -24.658 
% Error 0 1.9 3.2 4.1 5.4 
Eion -0.000 -2.000 -7.223 -14.066 -23.697 

Exp. 0.000 -2.000 -7.283 -14.332 -24.363 
% Error 0 0 0.82 1.9 2.7 
I.E. 0.500 0.848 0.012 -0.004 -0.380 
Exp. 0.500 0.904 0.198 0.343 0.305 
% Error 0 6.2 94 100 230 

 
Two Electrons 

There are five contributions to the total energy of a two-
electron atom or ion: the kinetic energy of each electron, the 
interaction of each electron with the nucleus, and the 
interaction of the electrons with each other. Using Ψ1s as a trial 
function yields the following expression for the total energy. 
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Minimization of E with respect to α gives 
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For a two-electron atom or ion the orbital energy of an 
individual electron is the sum of its kinetic energy, its 
interaction with the nucleus, and its interaction with the other 
electron. 
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Three Electrons 

The electronic structure of Li or a three-electron ion is 
1s

2
2s

1
. There are nine contributions to the total energy: the 

kinetic energy of each electron (3), the interaction of each 
electron with the nucleus (3), and the electron-electron 
interactions (3). 

 1 1 1 1 2 2 1 22 2 2s N s s s s N s s sE T V V T V V= + + + + +   (9) 

Consultation of Appendix B (42fr1897.zip Adobe Acrobat 
PDF or 42fr2897.zip Mathcad files) yields the following 
variational expression for E in terms of α. 

 21.125 2.250 1.045E Zα α α= − +  (10) 

Minimization of E with respect to α yields the following 
values for α, E, and the 1s and 2s orbital energies. 
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Four Electrons 

The Be atom electronic structure is 1s
2
2s

2
. The ground state 

energy consists of the following contributions. 
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Using Appendix B ((42fr1897.zip Adobe Acrobat PDF or 
42fr2897.zip Mathcad files) we find after collecting terms 

 21.250 2.500 1.615E Zα α α= − +  (13) 

Minimization of E with respect to α yields the following 
values for α, E, and the 1s and 2s orbital energies. 
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Five Electrons 

The electronic configuration for boron under the present 
model is 1s

2
2s

2
2p

1
. The 2pz orbital has been chosen for 

mathematical convenience, but the 2px and 2py orbitals would 
give the same result. The contributions to the boron ground-
state energy are 
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E as a function of α is 

 21.375 2.750 2.425E Zα α α= − +  (16) 

Minimization of E with respect to α yields the following 
values for α, E, and the 1s, 2s, and 2p orbital energies 
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Table 2. Comparison of Calculated Orbital Energies with Experiment 
(3) 

 H He Li Be B 

E1s -0.500 -0.897 -2.275 -4.286 -6.087 
Exp. -0.500 -0.904 -2.384 -4.380 -7.351 
% Error 0 0.7  4.5 2.1 7.4 
E2s   -0.033 -0.036 -0.014 
Exp.   -0.198 -0.343 -0.518 
% Error   83 90 97 
E2p     0.308 
Exp.     0.305 
% Error     201 

 
Appendix C shows (42fr1897.zip Adobe Acrobat PDF or 

42fr2897.zip Mathcad files) how the five-electron calculation 
can be executed using Mathcad. 

Discussion of Results 

The results of these calculations are compared with 
experimental data in Tables 1 and 2 [4]. Table 1 gives the 
theoretical values for the atomic ground states and the 
theoretical ground state of the +1 ion. The experimental atomic 
ground-state energy is the negative of the sum of the 
successive ionization energies. The experimental ground state 
of the ionic species is the negative of the sum of all of the 
successive ionization energies except the first ionization 
energy. These comparisons between theory and experiment are 
made in rows 3 and 6 of Table 1. It is also possible to calculate 
a theoretical first ionization energy by subtracting the atomic 
ground-state energy from the ground-state energy of the ion. 
This value can be compared with the experimental ionization 
energy as is shown in row 9 of Table 1. 

Note that while the ground state energies for the neutral 
atom and the +1 ion are in acceptable agreement with 
experimental data given the level of theory used, the 
calculation of the first ionization energy deteriorates seriously 
for Li, Be, and B. This is due to the fact that the first ionization 
energy is, in these cases, a small difference between two rather 
large quantities. Thus, the modest errors in Eatom and Eion are 
amplified in the calculation of the ionization energy, IE = 
(Eion – Eatom). From the point of view of the theoretical model, 
the problem is that for Li, Be, and B we have inner-shell 
electrons and valence electrons; thus, a one-parameter 
calculation is simply not adequate. This is clearly seen for Be 
and B where the model predicts that the +1 ions are more 
stable than the neutral atoms. The vast majority of the energy 
is in the core electrons and so it would be desirable for each 
orbital to have its own variational parameter. This can be done, 
but it requires, as noted above, an antisymmetric wave 
function and the evaluation of overlap and exchange integrals, 
significantly  increasing the complexity of the calculations. 
Appendix D (42fr1897.zip Adobe Acrobat PDF or 
42fr2897.zip Mathcad files) shows how this two-parameter 
calculation (after evaluation of relevant integrals) can be done 
using Mathcad. For the one-parameter calculation on Li the 
optimum value of α was found to be 2.536. In the two-
parameter calculation the core electrons have α equal to 2.680 
and the valence electron has β equal to 1.868; the ground state 
energy is improved by 2.2%. In other words the core electrons’ 
orbital has shrunk closer to the nucleus and the valence 
electron’s orbital has undergone an expansion. 

Table 2 compares the calculated orbital energies with 
experimental orbital ionization energies [4]. This comparison 
is based on Koopmans= theorem [5], which states that the 
orbital ionization energy can be approximated by the absolute 
value of calculated orbital energy. This assumes that ionization 
occurs as a two-step process: frozen ionization followed by 
relaxation of the ion to its true ground state. Under favorable 
conditions the energy change accompanying relaxation is 
small. This comparison is telling, basically, the same story as 
Table 1. The one-parameter model does not do a good job on 
the valence electrons of Li, Be, and B. 

Conclusion 

In the typical undergraduate course dealing with quantum 
chemistry, quantum mechanical exercises are restricted to one- 
and two-electron systems. The purpose of this paper has been 
to show that it is possible to extend the range of exercises to 
three, four, and five electrons at the atomic level without a 
great deal of additional computational effort. 

Appendix A 

The electron-electron potential energy is calculated by first 
evaluating the electric potential, Φ, due to one of the electron 
distributions. This is not difficult for spherical charge 
distributions [6]. For example, at the radial distance, r, from 
the nucleus the electric potential due to a spherical 1s charge 
distribution is 

 ( ) ( ) ( )2
12 2 2

1 1

0

4 4
r

s
s s

r

re
r r r dr e r dr

r r
π π

∞ ′Ψ
′ ′ ′ ′ ′Φ = Ψ +

′∫ ∫   

where e represents the electron charge. All of the charge 
within the spherical volume element of radius r behaves as if it 
were located at the center of the sphere. This contribution is 
given by the first integral in Φ1s(r). The remaining charge 
beyond r can be viewed as consisting of many hollow 
spherical charge shells of thickness dr′. The electric potential 
due to this charge is the same anywhere inside the hollow 
shells as it at the center of the sphere. This contribution is 
given by the second integral in Φ1s(r). 

Given Φ1s(r) the electron-electron potential energy 
interaction between a 1s and 2s electron is obtained by 
evaluating the following integral. 

 2 2
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The electron-electron potential integrals presented in 
Appendix B (42fr1897.zip Adobe Acrobat PDF or 
42fr2897.zip Mathcad files) were evaluated using this method. 
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